End-To-End Modeling

Integrated Structural Model

24-June-97

Andy Kissil JPL 818-354-8479 Chuck Perrygo GSFC/Swales 301-902-4296

Sunshield Concept Development & Structural Modeling

Sunshield Concept Development & Modeling Status

NGST

- □ Switched from 2 X 8 boom concept of Sept'96 to 1 X 4 boom concept that provides deployment control
- 4-Boom inflatable demonstration model completed
 - Deployed ~12 times to date with no failures (booms inflated ~25 times each)
 Sometimes you get lucky
 - No additional demo model work anticipated
- □ Sunshield dimensions revised to accommodate 4-beam deployment concept & to better match sunshield CP to Observatory CM
 - Area increased from 220 to 263 m²
- ☐ Generated preliminary mass, strength & stiffness sizing that appears compatible with both inflatable & mechanical-deployed booms
- Structural model consists of four beams with mass of all film layers distributed onto beams
 - A simple approximation In reality, film layers & booms only hardcoupled at center of sunshield & ends of booms

Inflatable Sunshield Model Deployment Sequence

NGST

Goddard Space Flight Center

Stowed (0.3 m Square)

Vertical Deployment

Note: So that the inflatable tubes can be seen, this demonstration is only with a single sunshield layer

Sunshield Concept Utilizes Axial-Deployed Booms To Provide Deployment Control

NGST

Sleeve-Over-Mandrel Inflatable Boom Provides Rigid & Straight Deployment

NGST

- Internal pressure pulls folded tube material over mandrel
- Mandrel forces tube to unfold into cylindrical shape
- · Mandrel guides tube in straight direction
- Internal pressure maintains shape of deployed tube

Mechanically-Deployed Boom Study

NGST

- □ Have discussed sunshield concept with vendors (AEC-ABLE & Astro)
- Have tentatively selected nut-deployed continuous-longeron coilable lattice boom as substitute for inflatable boom
 - Best compromise between performance, cost & mass
 - Carousel-deployment a reduced cost, mass & size possibility if stiffness & strength during deployment can be shown to be adequate
- ☐ Have baselined mechanical-deployed booms for system mass estimate
 - TBD (<20 kg) associated with mechanical-deployed booms relative to inflatable booms
- □ Have suggested to vendors use of glass/carbon fiber composite longerons to increase stiffness
 - AEC-ABLE is interested & will pursue
- ☐ Based on preliminary spec, have requested ROM estimates of mass, size, performance & cost from vendors

Mechanically Deployed Boom Options NGST

Goddard Space Flight Center

Nut-Deployed Coilable

- Motor-driven deployment; no boom twist; heaviest coilable design
- · High strength & stiffness during deployment

Lanyard-Deployed Coilable

- Simplest design, but boom twists on deployment
- No appreciable strength or stiffness during deployment

Carousel-Deployed Coilable

- Either self-deploying or motor driven; no boom twist
- Reduced stiffness & strength during deployment

Articulated-Longeron

- High stiffness & strength; variety of materials
- · Increased mass, complexity & cost

Future Plans Concerning Sunshield Development

NGST

- Final report on sunshield preliminary concept by end of July
 - Awaiting vendor inputs on sizing & ROM cost estimate
 - Documenting numerous analyses made over last five months
- ☐ Hope to have sunshield QuickTime movie on NGST website by August
 - Discusses both inflatable & mechanical boom deployment
 - Includes demo model deployment sequence
- Want to further pursue sunshield dynamics characteristics using improved structural model including booms & film membranes
- Want to verify sunshield dimensions with regards to OTA shading over range of required pitch & yaw angles
- Investigate alternate sunshield accommodation concepts for alternate
 Observatory configurations
- Study new ideas from Technology Challenge Review as appropriate

Goddard Space Flight Center

Integrated Structural Model

- Model Simplification
- ☐ Model Changes
- ☐ Modal Analysis Results

Integrated Structural Model Development

NGST

- ☐ Integrated model simplification
 - Condensed SSM detailed model to single point mass with equivalent inertia
 - Reduced Isolation Truss (~50 struts) to 4 equivalent beam elements
 - Reduced Isolation Truss End Plate/ OTA Support Truss interface (~50 plate elements) to single equivalent 6-DOF spring element
 - Result: Model reduced from 9K to 5K active DOF
- □ Integrated model modifications
 - Changed Sunshield model from 16-boom to 4-boom design
 - Changed OTA support truss from 8 struts to 6 struts (hexapod) with attachment points to OTA Main Ring at same points as SIM supports
 - Increased number of grids on OTA Secondary Support Blades
- ☐ Enhancement of NASTRAN-to-IMOS model conversion
 - Optimized rigid element processing with local coordinate system capability
 - Automated thermal distortion analysis command sequence

Integrated Structural Models

NGST

Goddard Space Flight Center

Sept'96 Detailed Model

Current Reduced Model

Comparison of Modal Frequencies for NASTRAN and IMOS Models

Integrated Structural Model Normal Mode Description

NGST

Mode No.	Freq (Hz)	Description of Mode	Mode No.	Freq (Hz)	Description of Mode
1	0	Rigid Body	26	4.91	Bending of Secondary Support Blades
2	0	Rigid Body	27	4.91	Bending of Secondary Support Blades
3	0	Rigid Body	28	4.91	Bending of Secondary Support Blades
4	0	Rigid Body	29	5.50	Lateral Translation of Secondary (Z)
5	0	Rigid Body	30	5.56	Torsion of Secondary
6	0	Rigid Body	31	5.58	Lateral Translation of Secondary (Y)
7	0.30	+X Sunshield Beam Bending; First Mode	32	7.10	Isolation Truss Bending (XZ)
8	0.32	+X Sunshield Beam Bending; First Mode	33	7.17	OTA Primary Petal Bending
9	0.51	-X Sunshield Beam Bending; First Mode	34	7.76	Isolation Truss Bending (YZ)
10	0.53	-X Sunshield Beam Bending; First Mode	35	7.87	OTA Primary Petal Bending
11	0.78	Torsion of Secondary	36	7.99	Isolation Truss Torsion & -X SS Beam
12	1.62	+X Sunshield Beam Bending; Second Mode	37	8.16	-X Sunshield Beam Bending; Third Mode
13	1.62	+X Sunshield Beam Bending; Second Mode	38	8.75	Isolation Truss & Primary Petals
14	2.01	±Y Sunshield Beam Bending; First Mode	39	8.77	Isolation Truss & Primary Petals
15	2.01	±Y Sunshield Beam Bending; First Mode	40	8.97	Isolation Truss, Primary Petals & +X SS
16	2.02	±Y Sunshield Beam Bending; First Mode	41	9.29	+X Sunshield Beam Bending; Fourth Mode
17	2.04	±Y Sunshield Beam Bending; First Mode	42	9.34	OTA Primary Petal Bending
18	2.81	-X Sunshield Beam Bending; Second Mode	43	9.59	Isolation Truss Torsion
19	2.81	-X Sunshield Beam Bending; Second Mode	44	10.15	OTA Primary Petal Bending
20	4.11	Lateral Translation of Secondary (Z)	45	11.40	Isolation Truss Bending (XZ)
21	4.46	Lateral Translation of Secondary (Y)	46	12.45	Isolation Truss Torsion
22	4.57	+X Sunshield Beam Bending; Third Mode	47	13.68	±Y Sunshield Beam Bending; Second Mode
23	4.57	+X Sunshield Beam Bending; Third Mode	48	13.69	±Y Sunshield Beam Bending; Second Mode
24	4.91	Bending of Secondary Support Blades	49	13.72	±Y Sunshield Beam Bending; Second Mode
25	4.91	Bending of Secondary Support Blades	50	14.01	±Y Sunshield Beam Bending; Second Mode

Integrated Structural Model Modal Frequency Distribution

